
Exact solutions to the two-dimensional Korteweg-de Vries-Burgers equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 L497

(http://iopscience.iop.org/0305-4470/27/13/006)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 27 (1994) L497-LSOl. Printed in the UK 

LETTER TO THE EDITOR 

Exact solutions to the two-dimensional 
Korteweg-de Vries-Burgers equation 

E J Parkes 
Depamnent of Mathematics, University of Smihclyde, Glasgow G1 IXH, UK 

Received 6 Januarr 1994 

Abstracl Two methods are described for obtaining exact travelling monotone shock wave 
solutions to the twodimensional Korteweg-de Vrie+BBurgers equation. They are compared 
with two methods that have been reported recently by other authors. 

In this article we discuss travelling monotone shock wave solutions to the two-dimensional 
Korteweg-de Vries-Burgers (2D-KdVB) equation 

(Ut + uu, + puxx* - vuxx)x + suyy = 0 (1) 

where p ,  U are real constants and s = f l .  Recently solutions to (1) were derived by two 
different methods r1.21. The purpose of this article is to show how these solutions are 
related and to rederive them using more economical methods. 

Before discussing the two-dimensional problem we review briefly the derivation of 
solutions to the ID-KdVB equation 

(2) UI + uux -4- pu,,, - vurx = 0. 

Jeffrey and co-workers [3,4] proposed the transformation 

= p(lnF),  + qOnOZz (3) 

where p and q are constants. The choice p =~ -12v/5 and q = 17.p leads to an 
equation in bilinear form for F. Travelling wave solutions to (2) are sought by taking 
F = 1 + exp[< - $01, where E = kx - Of, CO is an arbitrary constant, and k and w are 
c o n s t k  to be determined. Two solutions are obtained in terms of 

S = sech[i(e -CO)] and T = tanh[i(C - 60)] (4) 

namely 

W o r d  and wieg-Hulstman 151 have shown that the second of these solutions may also be 
obtained via the transformation 
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A different (and arguably more efficient) approach is to assume from the outset that 
u(x ,  f )  = U ( t ) ;  substitution into (2) and one integration gives 

- CU + ;U2+  pkzUtt - vkUt = C where c = o f k  (7) 

and C is an integration constant. Note that setting C = 0 in (7) is equivalent to demanding 
that U + 0 either as ( -+ +CO or as ( -+ -a; the solutions (5) have this property. 
Equation (7) cannot be integrated directly. McIntosh [6] and Samsonov and Sokurinskaya 
[7] used an hce transformation [SI 

~ = r z * + ~  z=ec r = r ( z )  (8) 

to reduce (7) to a directly integrable differential equation for r .  The resulting solutions for 
U are 

where 
I12 

t = - ( x - c f )  V and c=&[($,'-ZC] . 
5!4 

Xiong 191 obtained (9) from (7) by choosing the fortuitous ansatz 

where a, k and c are constants to be determined. The solutions (9) may be written in the 
alternative form 

3 9  
Z P  

U = -[SZ - ZT] + c 

with $ and c as in (9). Note that the solutions (5) are just the solutions (10) with C = 0. 
Vlieg-Hulstman and Halford [lo] reviewed the results in [3,4,6,9]. They observed that (2) 
is invariant under the transformation U" = u+A, x* = x+At ,  t' = I ,  where A is a constant. 
With 

the solutions (5) are transformed into the solutions (10). As well as using the transformation 
(3), Jeffrey and Mohamad [4] described a direct method in which they assumed that 

U(:) = AS"+ BT"' + D .  (12) 

Substitution of (12) into (7) with C = 0 leads to five independent equations for the unknowns 
A ,  B ,  D ,  k and c provided n = 2 and m = 1. The solutions (5) are then recovered. A 
related method was used by Huang er al [ll]. They assumed that 
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Substitution of (13) with M = 2 into (7) with C # 0 leads to five equations for the unknown 
constants ao, al ,  a2, k and c. The resulting solutions are (10). Malfliet [12] has proposed 
this method (with C = 0) as a systematic approach to finding solitary wave solutions to 
a wide variety of nonlinear wave equations. (Malfliet omits the factor in the definition 
of T in (4); i t  is included here so as to make notation consistent within this article.) This 
hyperbolic tangent method has been applied successfully to equations considerably more 
complicated than (2). see for example [13,14] and the related paper 1151. 

We now turn our attention to the two-dimensional problem. We present two efficient 
methods of obtaining solutions to the 2D-KdVB equation (1) and comment on two other 
methods of solution that have been reported recently [1 ,2 ] .  

We generalize the definition of 6 to c = kx + Zy - mt. On taking u(n, y .  t )  = U($) in 
(1) we obtain 

- CU + f U'+ pk2Utt - vkU; = C where c = (pk - sZ2)/k2 (14 
and C is an integration constant. We note that (14) is identical in form to (7) so that efficient 
methods based on (7) that worked for (2)  will also work for (1) provided that the different 
expression for c is taken into account; here we present details of the hyperbolic tangent 
method and the Ince transformation method as applied to the 2D-KdvB equation. 

To apply the two-dimensional generalization of the hyperbolic tangent method we 
substitute (13) into (14) and take C = 0. The left-hand side of (14) becomes a power 
series in T .  On balancing the highest order contributions from the l i n q  terms with the 
highest order contributions from the nonlinear terms we find that M = 2. We equate 
coefficients of T i  ( i  = 4,3,2,1,0) to obtain the following five,equations for the unknowns 
ao. al, a2, k,md c. 

$4 + &k2a2 = 0 

ala2 + $pk2al + vkaz = 0 
- caz + %a, 1 2  + %a2 - 2vk2az + 3vkal = 0 

- cal + aOal - fpk'al - vka2 = 0 

- cm + $ai + $pk2a2 - $wkal E 0. 

From these equations we find 

It follows that 

U = - [ S ~ - ~ T & ~ I  3v2 with f = -  v x + l y - ( h ~ ~ + * ) . t -  6v3 . '  (15) 
2% 5P v 

where 2 is arbitrmy.~ The solutions (15) are the two-dimensional versions of the solutions 
(5). We may generate other solutions to (1) from (15) by using the fact that (1)'is invdant 
under the transformation 

u " = u + h  x * = , x + h t  t * = t  , y * = . y .  (16) 
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In particular, with A given by (1 l), we obtain the solution corresponding to C # 0 in (15). 
namely 

where 
1/2 

5 --x V + l y  - (E + 5s12p -) t 

The solutions (17) may be written in the alternative form 

and 
c = f [(E>" - ZC] 5cL 5cL v 

with 5 and c as in (17). 

to 
To apply the Ince transformation method we substitute (8) into (14) which then reduces 

(19) pk'r'' + ir* = 0 
provided that 

Equation (19) may be integrated twice to give 

where, to ensure that the solution for r is bounded, the first constant of integration is taken to 
be zero and the second constant of integration E is taken to be strictly positive. Combining 
(8). (20) and (21) and setting E = exp((0) we obtain (18). 

Li and Wang [l] transformed (1) using (3). The choice p = -12v/5 and q = 1 2 ~  
leads to a long and complicated equation in which every term is of degree four in terms of 
F and its derivatives. On substituting F = 1 + exp[t - $1 into this equation they found 
four equations that have to be satisfied by o, k and I ;  Muthematica was used to find o and 
k with 1 arbitrary. Eventually this method leads to a pair of solutions given by (12) and 
(13) in [l] and by (15) in this article. Ma [2] introduced the aansformation 

into (14). The resulting equation for F is satisfied by F = 1 + exp[F - $01 provided that 

The outcome is a pair of solutions given by (10) in [2] and by (18) in this article. 
We have shown that, in view of (16), the solutions to the 2D-MVB equation (1) obtained 

in [l] and [Z] are equivalent. The method of solution used in [l] is tedious. The method 
of solution in [Z] and the Ince transformation method described herein are more efficient 
but &e dependent on the particdar form of (14). The two-dimensional generalization of 
the hyperbolic tangent method described herein is not only efficient but also has the merit 
of being widely applicable. 

The author thanks Dr Brian Duffy for useful comments and suggestions. 
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